

NORMANHURST BOYS HIGH SCHOOL

MATHEMATICS EXTENSION 1 (YEAR 11 COURSE)

Name:

Initial version by H. Lam, October 2014. Last updated November 27, 2020 for latest syllabus. Various corrections by students & members of the Department of Mathematics at North Sydney Boys and Normanhurst Boys High Schools.

Acknowledgements Pictograms in this document are a derivative of the work originally by Freepik at http://www.flaticon.com, used under 🕝 CC BY 2.0.

Parts of this handout are derived from the work by Mr P. G. Brown at the University of New South Wales, based on the Professional Development Short Course for Secondary School Teachers on 22/11/2013.

Symbols used	Syllabus outcomes addressed
() Beware! Heed warning.	ME11-2 manipulates algebraic expressions and graphical
(\mathbf{F}) Provided on NESA Reference Sheet	functions to solve problems
\bigcirc Facts/formulae to memorise.	Syllabus subtopics
(2) Textbook reference from the legacy Mathematics (2 U course	mit) ME-F2 Polynomials
A Mathematics Advanced content.	
(x) Mathematics Extension 1 content.	
L Literacy: note new word/phrase.	
(N) Further reading/exercises to enrich your understand and application of this topic.	ding
U Facts/formulae to understand, as opposed to blat memorisation.	tant
${\mathbb N}$ the set of natural numbers	
\mathbb{Z} the set of integers	
\mathbb{Q} the set of rational numbers	
\mathbb{R} the set of real numbers	
\forall for all	

- For a thorough understanding of the topic, *every* question in this handout is to be completed!
- Additional questions from *CambridgeMATHS Year 11 Extension 1* (Pender, Sadler, Ward, Dorofaeff, & Shea, 2019) will be completed at the discretion of your teacher.

• Remember to copy the question into your exercise book!

Contents

1	Language of polynomials	4
	1.1 Definitions	4
	1.2 (N) Method of undetermined coefficients $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	6
2	(R) Graphs of polynomials	7
	2.1 Multiple roots	7
3	Division of polynomials	10
	3.1 Division algorithm	10
4	The remainder & factor theorems	13
	4.1 The remainder theorem	13
	4.2 The factor theorem	16
5	Relationships between roots	20
	5.1 Vieta's formulas/Symmetric Functions of Roots	20
	5.1.1 Elementary symmetric functions of roots of a quadratic	20
	5.1.2 General symmetric functions of a quadratic	21
	5.2 Elementary symmetric functions of roots of a cubic	29
	5.3 Elementary symmetric functions of roots of a quartic	30
	5.4 Examples	31
6	Multiplicity of polynomial roots	37
	6.1 Fundamental theorem of algebra	37
	6.2 Application	43
7	Further problems	47
	7.1 (N) Enrichment: error correcting codes \ldots	47
	7.2 Miscellaneous problems	47
Re	eferences	55

Section 1

Language of polynomials

1.1 **Definitions** Learning Goal(s) **E** Knowledge C Skills **V** Understanding What is a polynomial Operate with polynomials How to identify a polynomial By the end of this section am I able to: Define a general polynomial in one variable, x, of degree n with real coefficients to be the expression: $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$, where $a_n \neq 0$. 12.1Definition 1 (L) A polynomial function is a function with positive integral (or zero) powers of x. $P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0$ where $a_k \in \mathbb{R}$ are the <u>coefficients</u> of the corresponding power of x, and $n \in \mathbb{N}$. Definition 2 (M) (L) The leading term is $a_n x^n$ The leading coefficient is a_n . Definition 3 (M) (L) A polynomial P(x) is if $a_n = 1$. 4

£	A	Ń	Gι	j.A	G	Ė	0	Ė	Ρ	Ó	LY	Ń	С	рМ	IA	ĹS	_	E)EF	IN	гiп	ΠC	N	\mathbf{S}		
				+				•				+											+		-	

🗐 Definitio	on 4			
(M) (L) The	constant	$\underbrace{\text{term}}_{\dots}$ is a_0 , i.e.	coefficient	
Definitio	on 5			
(M) (L) The	degree of P	$P(x)$ is $\deg(P) = n$, i.e.	highest power	
$\operatorname{of} x.$				
Importa	ant note			
Proficiency	with various factor	risation methods required	1	
	(1) 14 (1) 15 (1) 15 (1) 15 (1) 15 (1)			
$\sum_{i \in V} Exam$	ple 1 $^{3}-x^{2}+x-1$ $O(x)$	$-3x^3-9x^2$ and $B(x) =$	$-r^4 \pm 2r^3 - 3r^2$ ovaluato	
Given $P(x) = x$ P(x)Q(x)	pie 1 $^{3}-x^{2}+x-1, Q(x)$	$= 3x^3 - 2x^2$ and $R(x) =$	$-x^4+2x^3-3x^2$, evaluate	
Given $P(x) = x$ (a) $P(x)Q(x)$	pie 1 $^{3}-x^{2}+x-1, Q(x)$	$= 3x^3 - 2x^2 \text{ and } R(x) =$ (b) $Q(x)R(x)$	$-x^4+2x^3-3x^2$, evaluate	
Given $P(x) = x$ (a) $P(x)Q(x)$	pie 1 ${}^{3}-x^{2}+x-1, Q(x)$) Answ	= $3x^3 - 2x^2$ and $R(x) =$ (b) $Q(x)R(x)$ er: (a) $3x^6 - 5x^5 + 5x^4 - 5x^3 + 2$	$-x^4 + 2x^3 - 3x^2$, evaluate x^2 (b) $-3x^7 + 8x^6 - 13x^5 + 6x^4$	
Given $P(x) = x$ (a) $P(x)Q(x)$	pie 1 $^{3}-x^{2}+x-1, Q(x)$	= $3x^3 - 2x^2$ and $R(x) =$ (b) $Q(x)R(x)$ er: (a) $3x^6 - 5x^5 + 5x^4 - 5x^3 + 2$	$-x^4 + 2x^3 - 3x^2$, evaluate x^2 (b) $-3x^7 + 8x^6 - 13x^5 + 6x^4$	
Given $P(x) = x$ (a) $P(x)Q(x)$	pie 1 $^{3}-x^{2}+x-1, Q(x)$	$= 3x^{3} - 2x^{2} \text{ and } R(x) =$ (b) $Q(x)R(x)$ er: (a) $3x^{6} - 5x^{5} + 5x^{4} - 5x^{3} + 2$	$-x^4 + 2x^3 - 3x^2$, evaluate x^2 (b) $-3x^7 + 8x^6 - 13x^5 + 6x^4$	
Given $P(x) = x$ (a) $P(x)Q(x)$	pie 1 $^{3}-x^{2}+x-1, Q(x)$	$= 3x^{3} - 2x^{2} \text{ and } R(x) =$ (b) $Q(x)R(x)$ er: (a) $3x^{6} - 5x^{5} + 5x^{4} - 5x^{3} + 2$	$-x^4 + 2x^3 - 3x^2$, evaluate x^2 (b) $-3x^7 + 8x^6 - 13x^5 + 6x^4$	
Given $P(x) = x$ (a) $P(x)Q(x)$	pie 1 $^{3}-x^{2}+x-1, Q(x)$	$= 3x^{3} - 2x^{2} \text{ and } R(x) =$ (b) $Q(x)R(x)$ er: (a) $3x^{6} - 5x^{5} + 5x^{4} - 5x^{3} + 2$	$-x^4 + 2x^3 - 3x^2$, evaluate x^2 (b) $-3x^7 + 8x^6 - 13x^5 + 6x^4$	
Given $P(x) = x$ (a) $P(x)Q(x)$	pie 1 $^{3}-x^{2}+x-1, Q(x)$	$= 3x^{3} - 2x^{2} \text{ and } R(x) =$ (b) $Q(x)R(x)$ er: (a) $3x^{6} - 5x^{5} + 5x^{4} - 5x^{3} + 2$	$-x^4 + 2x^3 - 3x^2$, evaluate x^2 (b) $-3x^7 + 8x^6 - 13x^5 + 6x^4$	
Given $P(x) = x$ (a) $P(x)Q(x)$	pie 1 $^{3}-x^{2}+x-1, Q(x)$) Answ	$= 3x^{3} - 2x^{2} \text{ and } R(x) =$ (b) $Q(x)R(x)$ er: (a) $3x^{6} - 5x^{5} + 5x^{4} - 5x^{3} + 2$	$-x^4 + 2x^3 - 3x^2$, evaluate x^2 (b) $-3x^7 + 8x^6 - 13x^5 + 6x^4$	
Given $P(x) = x$ (a) $P(x)Q(x)$	pie 1 $^{3}-x^{2}+x-1, Q(x)$) Answ	$= 3x^{3} - 2x^{2} \text{ and } R(x) =$ (b) $Q(x)R(x)$ er: (a) $3x^{6} - 5x^{5} + 5x^{4} - 5x^{3} + 2$	$-x^4 + 2x^3 - 3x^2$, evaluate x^2 (b) $-3x^7 + 8x^6 - 13x^5 + 6x^4$	
Given $P(x) = x$ (a) $P(x)Q(x)$ $\frac{1}{2} = Further$ Ex 10A (Penc	pie 1 $^{3}-x^{2}+x-1, Q(x)$) Answ exercises ler et al., 2019)	$= 3x^{3} - 2x^{2} \text{ and } R(x) =$ (b) $Q(x)R(x)$ er: (a) $3x^{6} - 5x^{5} + 5x^{4} - 5x^{3} + 2$	$-x^4 + 2x^3 - 3x^2$, evaluate x^2 (b) $-3x^7 + 8x^6 - 13x^5 + 6x^4$	
Given $P(x) = x$ (a) $P(x)Q(x)$ $\stackrel{1}{=}$ Further Ex 10A (Penc • Q1-3 last of	pie 1 $^{3}-x^{2}+x-1, Q(x)$) Answ exercises ler et al., 2019) column	$= 3x^{3} - 2x^{2} \text{ and } R(x) =$ (b) $Q(x)R(x)$ er: (a) $3x^{6} - 5x^{5} + 5x^{4} - 5x^{3} + 2$ • Q6-13	$-x^{4}+2x^{3}-3x^{2}$, evaluate x^{2} (b) $-3x^{7}+8x^{6}-13x^{5}+6x^{4}$	
Given $P(x) = x$ (a) $P(x)Q(x)$ $\stackrel{2}{=}$ Further Ex 10A (Penc • Q1-3 last of	pie 1 $^{3}-x^{2}+x-1, Q(x)$) Answ exercises ler et al., 2019) column	$= 3x^{3} - 2x^{2} \text{ and } R(x) =$ (b) $Q(x)R(x)$ er: (a) $3x^{6} - 5x^{5} + 5x^{4} - 5x^{3} + 2$ • Q6-13	$-x^4 + 2x^3 - 3x^2$, evaluate x^2 (b) $-3x^7 + 8x^6 - 13x^5 + 6x^4$	

Section 2

R Graphs of polynomials

Theorem 2

8

- As $x \to \infty$, $P(x) \to \infty$ if a_n is positive
- As $x \to -\infty$
 - $-P(x) \rightarrow -\infty$ if deg(P) is <u>odd</u>...
 - $-P(x) \rightarrow \infty$ if deg(P) is <u>even</u>
- Every <u>odd</u> <u>powered</u> polynomial has at least <u>one</u> real root.

Example 3

Sketch, showing the behaviour near x intercepts:

- (a) $P(x) = (x-1)^2(x-2)$
- (b) $Q(x) = x^3(x+2)^4(x^2+x+1)$
- (c) $R(x) = -2(x-2)^2(x+1)^5(x-1)$

(R) GRAPHS	OF POLYNOMI	ALS – MULTIP	LE ROOTS : :		
		· · · · ·			
 				····	
	·•····•				
 	÷	·····			
 	÷	÷			
 	÷			····	
 	÷				
 	÷				
	······				
2	Further exe	ercises			
Ex 10B					
• Q2	2-4		•	Q6-11	

NORMANHURST BOYS' HIGH SCHOOL

Polynomials

Section 3

Division of polynomials

Learning Goal(s)

Knowledge When to use long division, remainder or factor theorems **Skills** How to use long division, remainder and factor theorems

V Understanding

Why the remainder and factor theorems work the way they do

☑ By the end of this section am I able to:

- 12.5 Use division of polynomials to express P(x) in the form P(x) = A(x)Q(x) + R(x) where deg R(x) <deg A(x) and A(x) is a linear or quadratic divisor, Q(x) the quotient and R(x) the remainder.
- 12.6 Prove and apply the factor theorem and the remainder theorem for polynomials and hence solve simple polynomial equations.

3.1 Division algorithm

Theorem 3

Every integer n can be written as

n = dq + r

where

							<u></u>	163				•	d	(1)	7) i	is t	he			di	vis	or				
						17) 2	785										•••		•••	•••					
							1	700																		
							1	085					a	(1)	33)	ia	th/	2			an	oti	ont			
							1	020					q	(1)	55)	15	0110	3	•••	•••	quo		5111	•••	•••	•
								65																		
								51															_			
								14				•	r	(14)	1) i	s tł	ıe			ſ	rem	iaii	ıde	$r_{}$		
:																										
		:	:										:									:				
			• • • • •			- - - - - - -		· · · · · · · · · · · · · · · · · · ·																		
		· · · · · · · · · · · · · · · · · · ·	* * * * * * * * * * * * * * * * * * *		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		 • • • • • • • • • • • • • • • • • • •	 			• • • • • • • • • • • • • • • • • • •									· · · · · · ·				
***********	•••					- - - - - - - - - - - - - -																· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·																								
	••••										· · · · · ·			· · · · · ·												
											· · · · · ·			· · · · · ·												
A	· · · · · · · · · · · · · · · · · · ·										· · · · · · · · · · · · · · · · · · ·															

Corollary 4

(U) Every polynomial P(x) can be written as

$$P(x) = D(x)Q(x) + R(x)$$

where

- D(x) is the <u>divisor</u>
- Q(x) is the <u>quotient</u>
- R(x) is the <u>remainder</u>

• Divide polynomials in a similar way to integers.

Example 4

Divide $3x^4 - 4x^3 + 4x - 8$ by

(a) x - 2

(b) $x^2 - 2$

Answer: (a) $(x-2)(3x^3 + 2x^2 + 4x + 12) + 16$ (b) $(x^2 - 2)(3x^2 - 4x + 6) + (-4x + 4)$

 (\mathbf{U}) The degree of the remainder must be less than the degree of the divisor, i.e.

 $\deg R(x) < \deg D(x)$

NORMANHURST BOYS' HIGH SCHOOL

🏏 Theorem 5

Section 4

The remainder & factor theorems

4.1 The remainder theorem

Theorem 6

The remainder theorem: if P(x) is divided by (x - a), then the remainder is P(a).

Steps
Write P(x) using the division algorithm (See Corollary 4 on page 11):

2. Find the value of the remainder by letting x = a:

Example 7 Find the remainder when $3x^4 - 4x^3 + 4x - 8$ is divided by x - 2. Answer: 16

The polynomial $P(x) = x^4 - 2x^3 + ax + b$ has a remainder of 3 after dividing by (x-1) and leaves a remainder of -5 when dividing by (x+1).

Find the value of a and b.

Answer: a = 6, b = -2

POLYNOMIALS

Example 9 [Ex 4D Q18] When $x^5 + 3x^3 + ax + b$ is divided by $x^2 - 1$, the remainder is 2x - 7. Find the value of a and b.

Example 11 Completely factorise $P(x) = x^4 + x^3 - 9x^2 + 11x - 4$ over \mathbb{R} .

NORMANHURST BOYS' HIGH SCHOOL

Polynomials

A Laws/Results

18

If the coefficients of P(x) are integers, then any integer zero of P(x) must be one of the divisors of the constant term.

Important note

Most polynomials seen at Extension 1 level will have integer roots. Use this to your advantage.

Example 12

[Ex 4D Q7] Fully factorise, and sketch a graph, indicating all intercepts with the axes. Turning points are not required. (a) $P(x) = -x^3 + x^2 + 5x + 3$ $P(x) = 3x^4 + 4x^3 - 35x^2 - 12x.$

(b)

NORMANHURST BOYS' HIGH SCHOOL

Example 13

[Ex 4E Q6] A polynomial of degree 3 has a double zero at 2. When x = 1 it takes the value 6 and when x = 3 it takes the value 8. Find the polynomial.

Ex 10D Q4-19

Ex 10E Q3, then Q5-13 odd

NORMANHURST BOYS' HIGH SCHOOL

Section 5

Relationships between roots

Learning Goal(s)

E Knowledge

What the symmetric functions are

🗘 Skills

Use the elementary symmetric functions to solve problems

V Understanding

Understand where the elementary symmetric functions of roots arises from, and when to use them

By the end of this section am I able to:

12.7 Solve problems using the relationships between the roots and coefficients of quadratic, cubic and quartic equations.

5.1 Vieta's formulas/Symmetric Functions of Roots

Definition 8

A symmetric function of polynomial roots is any algebraic combination of its roots which is unaltered by changing any two of these symbols, e.g. if α , β and γ are the roots of a cubic polynomial, then

$$\alpha^2\beta + \alpha\beta^2$$
$$\alpha^2\beta\gamma + \alpha\beta^2\gamma + \alpha\beta\gamma^2$$

are two of such symmetric functions.

5.1.1 Elementary symmetric functions of roots of a quadratic

Theorem 8

The elementary symmetric functions of a quadratic polynomial: If α and β are the roots of a quadratic equation $ax^2 + bx + c = 0$,

- The sum of the roots: $\alpha + \beta = -\frac{b}{a}$
- The product of the roots: $\alpha\beta = \frac{c}{n}$

Important note

Note in these two formulae, α and β are be "swapped around". Hence the symmetry. commutative , and can

 Proof Steps 1. 'Forcibly' factorise the <i>a</i> term out of <i>ax² + bx + c = 0</i>: 2. Rewrite <i>ax² + bx + c = 0</i> in factored form, given <i>x = α</i> and <i>x = β</i> are the roots: 3. Expand the factored form, and compare coefficients: (See Definition 6 on page 6) 5.1.2. General symmetric functions of a quadratic. 5.1.2 General symmetric functions of a quadratic. Write a symmetric function involving <i>a</i>, <i>b</i> and <i>c</i>. 			•			•												
 Steps 'Forcibly' factorise the <i>a</i> term out of <i>ax</i>² + <i>bx</i> + <i>c</i> = 0: Rewrite <i>ax</i>² + <i>bx</i> + <i>c</i> = 0 in factored form, given <i>x</i> = α and <i>x</i> = β are the roots: Expand the factored form, and compare coefficients: (See Definition 6 on page 6) Expand the factored form, and compare coefficients: (See Definition 6 on page 6) Example 14 Write a symmetric function involving <i>a</i>, <i>b</i> and <i>c</i>. 	Proof							•										
 'Forcibly' factorise the a term out of ax² + bx + c = 0: Rewrite ax² + bx + c = 0 in factored form, given x = α and x = β are the roots: Expand the factored form, and compare coefficients: (See Definition 6 on page 6) Expand the factored form, and compare coefficients: (See Definition 6 on page 6) Example 14 Write a symmetric function involving a, b and c. 		E Step	Ś															
 Rewrite ax² + bx + c = 0 in factored form, given x = α and x = β are the roots: Expand the factored form, and compare coefficients: (See Definition 6 on page 6) 1.2 General symmetric functions of a quadratic Example 14 Write a symmetric function involving a, b and c. 	1.	'Forcibly	y' fact	corise t	the a	term	out	of a	x^2 -	+bx	+c =	0:						
 2. Rewrite ax² + bx + c = 0 in factored form, given x = α and x = β are the roots: 3. Expand the factored form, and compare coefficients: (See Definition 6 on page 6) 5.1.2 General symmetric functions of a quadratic Example 14 Write a symmetric function involving a, b and c.																		
 3. Expand the factored form, and compare coefficients: (See Definition 6 on page 6) 5.1.2 General symmetric functions of a quadratic Example 14 Write a symmetric function involving a, b and c.	2.	Rewrite	$ax^2 +$	-bx+c	c = 0	in fac	etore	ed fo	rm,	giver	x =	lpha ai	nd x	= /	3 are	the	e root	s:
 3. Expand the factored form, and compare coefficients: (See Definition 6 on page 6) 5.1.2 General symmetric functions of a quadratic Example 14 Write a symmetric function involving a, b and c.																		
 5. Expand the factored form, and compare coefficients: (See Definition 6 on page 6) 5.1.2 General symmetric functions of a quadratic 5.1.2 Example 14 Write a symmetric function involving a, b and c. 	9	Frencesd	th,	- fo	-t	J f			d					fr.:			(C.	
5.1.2 General symmetric functions of a quadratic Image: Complete 14 Write a symmetric function involving a, b and c.	Э.	Definitio	on 6 o	on page	e 6)	u 10	OF III.	2	anq		шра	e	coe	liicie	ents.		(D)	e
5.1.2 General symmetric functions of a quadratic Image: Example 14 Write a symmetric function involving a, b and c.	•																	
5.1.2 General symmetric functions of a quadratic Example 14 Write a symmetric function involving <i>a</i> , <i>b</i> and <i>c</i> .																		
5.1.2 General symmetric functions of a quadratic																		
5.1.2 General symmetric functions of a quadratic Example 14 Write a symmetric function involving <i>a</i> , <i>b</i> and <i>c</i> .																		
5.1.2 General symmetric functions of a quadratic	· · · · · · · · · · · · · · · · · · ·																	
Example 14 Write a symmetric function involving a, b and c.																		
Write a symmetric function involving <i>a</i> , <i>b</i> and <i>c</i> .	5.1.2	Genera	l sym	imetr	ic fu	inctic	ons	of a	qu	adra	tic							
	5.1.2	Genera	l sym mple	imetr 14	ic fu	inctic)ns	of a	qu	adra	tic							
	5.1.2 Writ	Genera	l sym mple netric	imetr 14 functi	ic fu on in	inctic	ons	of a , <i>b</i> a	qu nd (adra c.	tic							
	5. 1.2 Writ	Genera Exa te a symn	l sym mple netric	imetr 14 functi	ic fu on in	nctic)ns ng a	of a , <i>b</i> a	qu nd (adra c.	tic							
	5.1.2 Writ	Genera Exa te a symn	l sym mple netric	imetr 14 functi	ic fu on in	nctic	ng a	of a , <i>b</i> a	qu nd (.adra	tic							
	5.1.2 Writ	Genera Exa te a symn	l sym mple netric	imetr 14 functi	ic fu	nctic	ng a	of a , <i>b</i> a	qu nd (adra c.	tic							
	5. 1.2 Writ	Genera Exa te a symm	l sym mple netric	metr 14 functio	ic fu	nctic	ng a	of a	qu nd (adra c.	tic							
	5. 1.2 Writ	Genera Exa te a symm	l sym mple netric	nmetr 14 functi	ic fu	nctic	ng a	of a , b a	qu nd a	adra c.	tic							
	5. 1.2 Writ	Genera Exa te a symm	l sym mple netric	14 functi	ic fu	inctic	ng a	of a , <i>b</i> a	qu nd d	adra c.	tic							
	5. 1.2 Writ	Genera Exa te a symm	l sym mple netric	14 functi	ic fu	inctic	ng a	of a , <i>b</i> a	qu nd (adra c.	tic							
	5.1.2 Writ	Genera Exa te a symm	l sym mple netric	ımetr 14 functi	ic fu	wolvin	ng a	of a , <i>b</i> a	qu nd	adra c.	tic							
	5.1.2 Writ	Genera Exa te a symm	l sym mple netric	imetr 14 functio	ic fu	volvi	ng a	of a , <i>b</i> a	qu	adra c.	tic							
	5.1.2 Writ	Genera Exa te a symm	l sym mple netric	ımetr 14 functi	ic fu	ivolvii	ng a	of a , <i>b</i> a	qu nd	adra.	tic							

If α and β are the roots of the quadratic equation $2x^2 - 5x + 1 = 0$, find the values of:

(a) $\alpha + \beta$ (b) $\alpha\beta$ (c) $\frac{1}{\alpha} + \frac{1}{\beta}$ (c) $\frac{1}{\alpha} + \frac{1}{\beta}$ (c) $\frac{1}{\alpha} - \frac{1}{\beta}$ (c) $\alpha^2 + \beta^2$ (c) $(\alpha - 3)(\beta - 3)$

Important note

The actual values of α and β are not the emphasis, but rather their sum and their product.

NORMANHURST BOYS' HIGH SCHOOL

						•																		•									•				
		26	<u></u>	<u></u>			I	REL	ATIO	ONSHI	PS I	BETV	VEEN	N RC	OTS	3	VIE	TA?	S FO	RN	IULA	$\frac{s/s}{s}$	SYM	IME	TRI		UNCTI	ÓNS	OF	Roo	TS					••••	
						•							•											• • • •				:		· · · · · · · · · · · · · · · · · · ·			•••••				
																								• • • • • •						· · · · · · · · · · · · · · · · · · ·							•••
																														· · · · · · · · · · · · · · · · · · ·							
									•••••								•••••				•••••			•••••								•••••	•••••	· · · · · · · ·		••••	
																														•							
																														· · · · · · · · · · · · · · · · · · ·							
															••••						•••••				• • • • •												•••
				••••					•••••			•••••																				•••••	•••••	•••••		••••	
									•••••																					· · · · · · · · · · · · · · · · · · ·			•••••				
																														· · · · · · · · · · · · · · · · · · ·		•••••	•••••	· · · · .			
																														•			•••••				
				••••					•••••		· · · · · ·	••••••			••••		••••	••••			····ċ		•••••	•••••		•••••				· · · · · · · · · · · · · · · · · · ·	••••	•••••	•••••	•••••		••••	• • •
						· · · · ·															· · · · · · · ·													· · · · i ·			
				••••					•••••		•••	••••••								: : :			: 				····	: : :		· · · · · ·		•••••	•••••	•••••		••••	
																				• • • •	•••••					•••••							•••••	•••••			•••
																																		···· ;			
	•••••				•			•••••	•••••		•••••	•••••			••••						•••••			• • • • •			····					•••••	•••••	•••••		••••	• • •
																														· · · · · · · · · · · · · · · · · · ·				•••••			
	•••••								•••••		•	••••••									•••••						····			· · · · · ·		•••••	•••••	•••••		••••	
	•••••								•••••						••••				•••••		•••••		•••••									•••••		•••••		••••	•••
																												; 		· · · · ·			?				
	•••••			••••					•••••		• • • • • •				••••		••••	••••	•••••		•••••			•••••		•••••		· · · · · ·		· · · · · · · · · · · · · · · · · · ·		•••••	•••••	•••••		••••	• • •
																													· · ·	* * * * * *							
																											· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				•••••			
						• •							•															:		· · · · · · · · · · · · · · · · · · ·							
				•••••		•			•••••		• • • • • •	• • • • • •				••••	••••	•••••			•••••			• • • • •			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		•••••	•••••	•••••		••••	•••
						•																								· · · · · · · · · · · · · · · · · · ·							
		Poly	NOMIAI	LS					•••••								••••		•••••					NOI	RMA	NHU	RST BC	YS' H	IGH	SCHO	OL	•••••	•••••	•••••		••••	
						•					•		•															:		· · · · · · · · · · · · · · · · · · ·							
												· · · · · · · · · · · · · · · · · · ·																									•••
:				÷		•	:		:		÷		:	:		÷		:		:		÷		-		÷		:		•	÷		•		÷		

[2005 HSC Q10] The parabola $y = x^2$ and the line y = mx + b intersect at the points $A(\alpha, \alpha^2)$ and $B(\beta, \beta^2)$ as shown in the diagram.

- i. Explain why $\alpha + \beta = m$ and $\alpha\beta = -b$.
- ii. Given that $(\alpha \beta)^2 + (\alpha^2 \beta^2)^2 = (\alpha \beta)^2 \left[1 + (\alpha + \beta)^2\right]$, show that **2** the distance $AB = \sqrt{(m^2 + 4b)(1 + m^2)}$
- iii. The point $P(x, x^2)$ lies on the parabola between A and B. Show that the area of $\triangle ABP$ is given by $\frac{1}{2}(mx - x^2 + b)\sqrt{m^2 + 4b}$.

Hint: use this perpendicular distance formula

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

to find the perpendicular distance from a point (x_1, y_1) to a straight line ax + by + c = 0.

iv. The point P in part (iii) is chosen so that the area of $\triangle ABP$ is a **2** maximum.

Find the coordinates of P in terms of m.

NORMANHURST BOYS' HIGH SCHOOL

1

 $\mathbf{2}$

																								•												
	·····	28	<u></u>	<u></u>	<u></u>		<u></u>	Rei	LATI	ONSH	IPS	BETV	WEEI	N RC	ОТ	s –	VIE	TA?	S FC	ORN	1UL2	AS/S	SYM	IME	TRI	C F	UNCTI	ÓNS	OF	Roo	TS					
				*																				• • • •				:					• • • • •			
																				•				• • • • • •												
					••••••														•••••					•••••										•••••		
											•••••••••••••••••••••••••••••••••••••••	••••••			•••••									•••••								•••••				
					••••••		•••••								• • • • •																			• • • • •		
						÷																														
				••••											•••••		· · · · ·							• • • • •								•••••	•••••	•••••		
																																•••••	•••••			
																								•••••								•••••	•••••	• • • • •		
)																												
				•••••	 	· · · · · · · · · · · · · · · · · · ·		:			•••••••••••••••••••••••••••••••••••••••	••••••			•••••												····	: : :					•••••		• • • • • •	
											•••••																									
					••••••			· · · · ·																												
						•••••••	•					•••••			•••••									• • • • •		•••••	····					•••••	•••••	••••	•••••	
								· · · · · ·																												
				•••••	••••••••	··									•••••												····					•••••	•••••	•••••		
	•••••				••••••										•••••		· · · · · ·						•••••									•••••		••••		
																												; 								
									· · · · · · · · · · · · · · · · · · ·																											
	••••			•••••	• • • • • •			: 			•••••	• • • • • •			•••••					•••••			•••••	•••••		•••••		· · · · · ·				•••••				
																													· · ·							
									· · · · · ·															• • •				: : :								
	• • • • •			•••••	• • • • • • •						••••••	••••••			•••••									•••••		•••••	· · · · · · · · · · · · · · · · · · ·	• •					• • • • •	••••		
																																	•			
		Poly	NOMIA	LS	•••••							••••								••••				NOI	RMA	NHU	RST BC	YS' H	IGH	SCHC	OL		•••••	•••••		
						· · · · · · · · · · · · · · · · · · ·																						:								
	• • • • •																							· · · · · · ·									· · · · · · ·			
:				:		:					÷		:					:		-		-		-		-		•					-		:	

5.2 Elementary symmetric functions of roots of a cubic Theorem 9

The elementary symmetric functions of a cubic polynomial: If α , β and γ are the roots of a cubic equation $ax^3 + bx^2 + cx + d = 0$,

• Sum of roots, one at a time:

$$\alpha + \beta + \gamma = -\frac{b}{a} \tag{5.1}$$

• Sum of pairs of roots: (two at a time)

$$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a} \tag{5.2}$$

• Sum of triples of roots: (three at a time)

$$\alpha\beta\gamma = -\frac{d}{a} \tag{5.3}$$

Proof

- E Steps
- 1. Rewrite $ax^3 + bx^2 + cx + d = 0$ in factored form:

2. Expand the factored form, and compare coefficients:

RELATIONSHIPS	BETWEEN ROO	TS – ELEMEN	TARY SYMMETRI	C FUNCTIONS OF ROOT	S OF A QUARTIC
			_	_	
3 Elementary sym	imetric fi	unctions	of roots o	f a quartic	
The elementary sump	notria funa	tions of a	quartia poly	nomial. If α , β	α and δ
are the roots of a quart	tic equation	$ax^4 + bx^3$	$+ cx^2 + dx +$	e = 0,	
• Sum of roots, one	at a time:				
		$\alpha \perp \beta \perp \alpha$	$+\delta = -\frac{b}{b}$		(5.4)
	••••••	$\alpha + \rho + \gamma$	$+ \circ \overline{a}$	•••••	(0.4)
• Sum of pairs of re	oots: (two a	t a time)			
······································		,		<i>c</i>	
	$\alpha\beta + \alpha\gamma$	$+ \alpha \delta + \beta \gamma$	$+\beta\delta+\gamma\delta=$	ā	(5.5)
C			-)		
• Sum of triples of t	roots: (thre	e at a time	e)		
	$lphaeta\gamma+lpha$	$lphaeta\delta+lpha\gamma\delta$	$+\beta\gamma\delta = -\frac{d}{a}$		(5.6)
	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••			
• Sum of quadruple	s of roots:	(four at a t	time)		•••••••••••••••••••••••••••••••••••••••
		$lphaeta\gamma\delta$	= -		(5.7)
			<u>a</u>		
roof Expand the produ	ct of the fac	tors and co	ompare coeffic	ients with $ax^4 + bx$	$c^3 + cx^2 + dx$
· · · · · · · · · · · · · · · · · · ·					
•••••••••••••••••••••••••••••••••••••••					
				· · · · · · · · · · · · · · · · · · ·	
See also					
http://mathworld.	wolfram.co	om/Vietas	Formulas.ht	nl	
http://mathworld.	wolfram.co	om/Fundam	entalTheore	mofSymmetricFun	ctions.html
XNOMIALS				NORMANHURST B	OYS' HIGH SCHOOL

Theorem 11

Every symmetric function of the roots can be expressed in terms of the elementary symmetric functions.

5.4 Examples

Example 22 Let α , β and γ be the roots of $x^3 - 3x + 2 = 0$. (a) Find the value of the elementary symmetric functions,

i
$$\alpha + \beta + \gamma$$
 ii $\alpha \beta + \beta \gamma + \alpha \gamma$ iii $\alpha \beta \gamma$.

(b) Hence evaluate

i
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$
. ii $\alpha^2 + \beta^2 + \gamma^2$

iii
$$\alpha^2\beta + \alpha\beta^2 + \beta\gamma^2 + \beta^2\gamma + \alpha\gamma^2 + \alpha^2\gamma.$$

Answer: i. $\frac{3}{2}$ ii. 6 iii. 6

NORMANHURST BOYS' HIGH SCHOOL

Polynomials

1	34																			F	EL.	ATIC	ONSI	HIPS	5 BE	TWI	EEN	RO	отѕ]	Exa	۱MP	LES			
• • •			7		E	xaı	mp	le	28							• • • • • •														• • • • •					 	
		[20)09	С	\mathbf{SS}	A	Ex	t 1]																									 	 	
		(i)		If ar	th ith	e r me	oo etic	ts se	of ries	x^3	– ho	$6x^2$ w t	²+ ha	- 3: t o	r + ne	-kof	=the	0 = rc	ar oot	e c s is		sec	uti	ve	te	rms	5 O	fa	n		5	2				
		(ii))	Н	enc	e f	ind	l tł	ie v	valı	ıe (of <i>i</i>	k a	nd	th	e c	oth	er t	JWC	o re	oots	5.									•	3			 	
																													- - - - - - - -					 	 	
				•												•				А	nsv	ver:	<i>k</i> =	= 10	, otl	ier r	oots	are	e —1	and	15.				 	
																• • • • •																				
••••			· · · · ·)												• • • • • •														• • • • •	••••			 	 	
																														• • • • •				 	 	
																•																				
••••			; ; ;	; ; ;							• • • • •																	· · · ·		••••	••••	•••••			 	(• • • •
																•																		-		
••••																																		 	 	
																																•••••		 	 	
											•••••																			•••••				 	 	
• • • •				· · · · · · ·																										• • • • •		• • • • •			 	
				•												•																				
) • • • • • • • •													· · · · · ·														••••	•••••				 	
••••				: 																								· · · · · · ·		•••••	•••••	•••••		 	 	
••••				· · · · · ·												•														••••		••••		 	 	
																• • • •																				
			· · · · · ·	· · · · · · · ·												• • • • • •														•••••				 	 	
			· · · · · ·	· · · · · · · ·												· · · · · ·														••••		••••		 	 	
				• • • • •												• • • • •																		* * * *		
				· · · · · · ·												· • • •																		 	 	
••••			- - - - - -							• • • • •	••••••																			•••••		•••••		 	 	
			· · · · · ·																											•••••				 	 	
																• • • •	· · ·																			
1	OLY	NOMI	ALS																						NO	RMAI	NHUI	RST	воч	S' HI	IGH	SCH	OOL	 	 	

Example 29

The roots of the equation $4x^3 - 13x^2 - 13x + 4 = 0$ are consecutive terms of a geometric sequence.

Find the roots of this equation.

Section 6

Multiplicity of polynomial roots

Knowledge What is the fundamental theorem of algebra **\$ Skills**

Operate with, and graph polynomials with multiple roots

Vunderstanding

The fundamental theorem of algebra and link to the derivative

☑ By the end of this section am I able to:

12.8 Determine the multiplicity of a root of a polynomial equation.

12.9 Graph a variety of polynomials and investigate the link between the root of a polynomial equation and the zero on the graph of the related polynomial function.

6.1 Fundamental theorem of algebra

Fundamental theorem of algebra Every polynomial equation of degree n will have n roots.

Theorem 13

Theorem 12

Multiplicity If α is a root of a polynomial P(x), i.e. $P(\alpha) = 0$ and

$$P(\alpha) = P'(\alpha) = P''(\alpha) = P^{(3)}(\alpha) = \dots = P^{(r)}(\alpha)$$

then α is a root of multiplicity r + 1.

For $P(x) = (x - 5)^3$, (a) Find P'(x)(b) Find P''(x)(c) Find $P^{(3)}(x)$, the third derivative.

				\$ F			- I -								* * * * *		· · · · ·		· · · · · · · · · · · · · · · · · · ·								-		*		· · · · · · · · · · · · · · · · · · ·	· · · · · · ·			
		Co	onc	lus	ior	1	For	r E	xai	mp	le	32, 1	<i>x</i> =	= 5	is is	a	roo	ot (of 1	nul	tip	licit	ty			•			•			* * * * *			
	• • •		•	.3.	fc	or I	P(x	;) =	= 0				•	2	. f	or	P'	(x)) =	0			•	.1	for	P''(<i>x</i>) =	= 0							
		a	nd	l no	ot e	a ro	oot	of	$P^{(}$	⁽³⁾ (:	x).																				· · · · · · · · · · · · · · · · · · ·				•
																																			•
												· · · · · · · · · · · · · · · · · · ·																							
																																			•
																						•••••									••••		•••••		•
																																			•
			· · · ·																																
••••								•••••			• • • • •		•••••														 		••••• •••••						•
												· · · ·													: 										
••••			· · · · · ·									 										•••••					· · · · · ·		· · · · · · · · · · · · · · · · · · ·				••••		
																																			•
••••			· · ·					• • • • • •	••••••													•••••			· · · · · · · · · · · · · · · · · · ·								•••••		
)																			•••••											••••		•
												· · · · · · · · · · · · · · · · · · ·																							
																																			•
	••••									• • • • •	• • • • •						· · · · · ·														•••••				•
		· · · · · ·	· · · · · · · ·																								· · · · · ·		· · · · · ·						
			· · · · ·														· · · · · ·										· · · · · · ·								
												• · · · · · · · · · · · · · · · · · · ·															- - - - -		· · ·						
	••••	· · · · · · · · · · · · · · · · · · ·	· · · · · ·												· · · · · · · · · · · · · · · · · · ·		(* * * * * * * * * * * *	· · · · · · ·	· · · · · · ·								****** - - - - - - - - - - - - - - - -		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·			•
																	· · · ·												· · ·						•
	• • • •			•					· · · · · · · · · · · · · · · · · · ·																				*						
				•								· · · · · · · · · · · · · · · · · · ·																							
			- - - - -									· · · · · · · · · · · · · · · · · · ·								· · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
<u>1</u>	OLY	NOMI	ALS																			• • • • • • •		NC	RMAN	HURST	BOY	rs' high	SCH	OOL		•••••	•••••	••••	•

6.2 Application

A Laws/Results

Geometry of points of intersection When finding the point of intersection for two graphs y = f(x) and y = g(x) by solving simultaneously, i.e. solving for f(x) = g(x), around the neighbourhood of the root with multiplicity

f(x) crosses g(x) at that x value. 1: • Resembles straight lines crossing each other. Draw example f(x) is tangential to g(x). Resembles: 2: • A line being tangential to a quadratic . • or, two curves sharing a <u>common</u> <u>tangent</u>. Draw example f(x) and g(x) will cross each other similar to a horizontal 3: point of inflexion . Draw example

Corollary 15

Maximum number of points of intersection Polynomial equations of degree n arising from solving simultaneously implies the graphs will cross each other <u>no</u>.

more \dots than n times.

POLYNOMIALS

								A -1	• • • • •						• •																	
	[2(112	N	SC	xai 2H	mp s 1	DIE Evt	41 2	Tr	ial	0	12]			•																	
	ر ک ر i.) 1 2	Th	e r	olv	ync	omi	al e	eau	iati	√ on	P	(x)	=	0 ł	ıas	a	doı	ıble	e re	oot	at		=	α.				6	2		
		- 	Sho	ow	th	at	<i>x</i> =	= α	is	als	0.8	a ro	ot	of	the	e e	qua	atic	n .	P'((x)	=	0.									•••••
	ii.		Yo	u a	re	giv	ven	$^{\mathrm{th}}$	at	<i>y</i> =	= <i>m</i>	nx :	is a	a ta	ang	en	t to	o tł	ne c	cur	ve	<i>y</i> =	= 3		$\frac{1}{2}$.					1		
			Sho	ow	$^{\mathrm{tha}}$	at	the	eq	lua	tio	n <i>r</i>	$nx^{\mathfrak{d}}$	3 _	3 <i>x</i>	$;^{2} +$	- 1	=	0 h	as	a c	lou	ıble	e ro	oot	x²							
	iii.		He	nce	e fir	nd	the	e eo	qua	itio	ns	of	an	y s	ucł	ı ta	ang	en	ts.										é	3		
																									An	swe	er: 1	y = =	$\pm 2x$			
		f		lm	por	ta	nt	no	te																							
	(!) I	Key	yw	oro	\mathbf{ds}	: Sl	hov	V -	wł	nicł	ı m	ay	in	vol	ve	wr	itir	ıg a	ı se	ent	eno	ce!									
))]						• • • • •																						•••••		
)]]	 																											· · · · · ; . · · · · ;		
			- - - - - -												•																	
) • • • • •]] • • • • •	••••• • •						••••••					• • • • •					•••••										••••	····÷		· · · · · · · · · · · · · · · · · · ·
																														•••••		
			; ;						 																					·····;		· · · · · · · ·
			•						•																							
•••	· · · · · · · · · · · · · · · · · · ·		 	 										• • • • •					•••••								(•••••			•••••		•••••
			· · · · · ·						· · · ·																		 			·····;		
			•						* * *						•																	
	· · · · · · · · · · · · · · · · · · ·	••••• • •	· · · · ·	· · · · ·																							() 			•••••		•••••
																														•••••	•••••	•••••
			• • • • • • • • • • •		· · · · ·				· • • •						•				• • • • •													••••
			- - - - - -						- + - - - - - - -						· · · · · · · · · · · · · · · · · · ·																	
		••••• • • •	· · · · · ·		· · · · · ·				· · · · · ·																							
				· · · ·										· · ·																•••••		
		· · · · · ·	· • • • • • •	· · · · · ·					· • • • • •						•												· · · · · · ·			•••••		•••••
									• • • • •																							
			· · · · ·	- - - - - - - - - - - - - - - - - - -					- - - - - - -					· • • • •					· · · · · · · · ·													
					•														• • • • •											••••		•••••
•••			· · · ·	· · · · · ·					· • • • • •																				•			
	:		:		: :		:		:						: :												:		:			

NORMANHURST BOYS' HIGH SCHOOL

Polynomials

	 		:		· · · · · · · · · · · · · · · · · · ·											• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •				••••••	• • • • • •			•••••	•••••	•••••		
			ľ	IULT	IPLI	CITY	OF	PO	LYN	ом	IAL RC	OTS	- A	Applic	ATION	•			· · · · · · · · · · · · · · · · · · ·								45		
	 															•	• • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		 							<u></u> .		
	 															•													
			÷																										
	 																			 	••••					•••••			
																			•										
	 			••••																 		• • • • • •			•••••	•••••	•••••		
					•												•												
	 		į.																	 									
	 																			 			: :		•••••				
÷			÷																				:						
	 			••••	•••••••••••••••••••••••••••••••••••••••														·····	 	•••	• • • • • •	 		•••••	•••••			
																	•			 									
			÷.		• • • •																								
	 : 		÷																	 			:		•••••		•••••		
	 	•••••		••••	•••••••															 ••••	•••	• • • • • •			•••••	•••••	•••••		
					••••••																		••••• • •						
	 																			 			: : : · · · ·						
	 · · · · ·				•••••••••															 			: :			•••••			
	····;																· · · · · · · · · · · · · · · · · · ·				•••					•••••			
	 	•••••		••••	•••••••												•			 	•••	• • • • • •			•••••	•••••	•••••		
•																	•									•••••			
	 		÷.																	 	···								
	 · · · · · ·		÷	••••	: 	-														 	· · · · · · ·		:		••••		••••		
																			· · · · ·							••••			
	 																			 	•••				•••••	•••••	•••••		
	 																			 			: : : · · · · ·						
	 ····;																			 		• • • • • •			•••••				
	 				•			• • • • • •												 					•••••		••••		
	 																		· · · · · · · · · · · · · · · · · · ·	 									
	 		N	ORM	: NHU	BST	BOV	S, нь	сн с	СНС	01									 	:				Por	YNOP	fl A T C		
÷	:		. N	JIGWIP			-01	~	- 11 Q	<u>он</u> с,	с н ;					: : :	1	1.1.1	÷ :		÷		:	. :	1.00			:	

Section 7

Further problems

7.1 (N) Enrichment: error correcting codes

Read the appendix in Brown et al. (2011) on an application of polynomials modulo 2 and error correcting codes. Online version:

(URL) http://www.amsi.org.au/teacher_modules/polynomials.html

7.2 Miscellaneous problems

- 1. P(x) is a monic polynomial of the fourth degree. When P(x) is divided by x + 1 and x 2, the remainders are 5 and -4 respectively. Given that P(x) is an even function ie. one where P(x) = P(-x).
 - (a) Express it in the form

$$a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$$

- (b) Find all the zeros of P(x).
- 2. The polynomial $P(x) = x^3 6x^2 + kx + 14$ has a zero at x = 1.
 - (a) Determine the value of the constant k
 - (b) Find the linear factors of P(x).
 - (c) Find the roots of the equation P(x) = 0.
 - (d) The set of values of x for which P(x) > 0.
- **3.** A monic cubic polynomial when divided by $x^2 + 4$ leaves a remainder of x + 8 and when divided by x leaves a remainder of -4. Find the polynomial in the form ax^3+bx^2+cx+d .
- **4.** If α , β and γ are roots of the equation $x^3 x^2 + 4x 1 = 0$, find the value of $(\alpha + 1)(\beta + 1)(\gamma + 1)$.
- 5. The polynomial

$$P(x) = x^4 - 3x^3 + ax^2 + bx - 6$$

leaves a remainder of 8 when divided by (x + 1). If (x - 3) is a factor of P(x), find the values of a and b.

- 6. The polynomial $P(x) = x^3 + ax^2 + bx + c$ leaves the same remainder, whether divided by (x + 1), (x + 2) or (x + 3). Find the values of a, b and c if the polynomial has a zero equal to 1 and then show that it has no other real zeros.
- 7. P(x) denotes the quadratic polynomial $kx^2 + (k-1)x (2k-1)$, where k is a real, rational number.
 - (a) Show that the equation P(x) = 0 always has real, rational roots for all values of k.
 - (b) Find the value of k for which the roots of P(x) = 0 are equal.
 - (c) Find the value(s) of k for which one of the roots of P(x) = 0 will be double the other root.
- 8. Two of the roots of the equation $x^3 + ax^2 + b = 0$ are reciprocals of each other (a, b are both real).
 - (a) Show that the third root is -b.
 - (b) Show that $a = b \frac{1}{b}$.
 - (c) Show that the two roots, which are reciprocals, will be real if $-\frac{1}{2} \le b \le \frac{1}{2}$.
- 9. If $f(x) = x^3 + 3x^2 10x 24$, calculate f(-2) and express f(x) as the product of three linear factors.
- 10. Two of the roots of the equation $x^3 + px^2 + qx + r = 0$ are equal in magnitude but opposite in sign.
 - (a) Show that x = -p is the other root. (b) Show that r = pq.
- 11. α , β and γ are roots of the equation $x^3 + 2x^2 3x + 5 = 0$. Find:
 - (a) $\alpha + \beta + \gamma$. (c) $\alpha \beta \gamma$.
 - (b) $\alpha\beta + \alpha\gamma + \beta\gamma$. (d) $(\alpha 1)(\beta 1)(\gamma 1)$.
- **12.** The equation $x^3 2x^2 + 4x 5 = 0$ has roots α , β and γ .
 - (a) Write down the values of $\alpha\beta + \alpha\gamma + \beta\gamma$ and $\alpha\beta\gamma$.
 - (b) Hence find the value of $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$.
- **13.** Consider the polynomial $P(x) = 6x^3 5x^2 2x + 1$.
 - (a) Show that 1 is a zero of P(x).
 - (b) Express P(x) as a product of its linear factors.
 - (c) Solve the inequality $P(x) \leq 0$.
- 14. One of the roots of the equation $x^3 + ax^2 + 1 = 0$ is equal to the sum of the other two roots.
 - (a) Show that $x = -\frac{a}{2}$ is a root of the equation.
 - (b) Find the value of a.

- **15.** The equation $x^3 mx + 2 = 0$ has two equal roots.
 - (a) Write down expressions for the sum of the roots and for the product of the roots.
 - (b) Hence find the value of m.
- **16.** (a) Factorise $3x^3 + 3x^2 x 1$.
 - (b) Solve the equation

$$3\tan^3\theta + 3\tan^2\theta - \tan\theta - 1 = 0$$

for $0 \leq \theta \leq \pi$.

- **17.** The equation $2x^3 5x 1 = 0$ has roots α , β and γ . Find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.
- 18. The polynomial $P(x) = x^5 + ax^3 + bx$ leaves a remainder of 5 when it is divided by (x-2), where a and b are numerical constants.
 - (a) Show that P(x) is odd.
 - (b) Hence find the remainder when P(x) is divided by (x + 2).
- **19.** (a) Given x = 1 is a zero of the polynomial $P(x) = x^3 3x + 2$, express P(x) as a product of three linear factors.
 - (b) Hence solve the inequality $x^3 3x + 2 \le 0$.
- **20.** The polynomial P(x) is given by $P(x) = x^3 + ax + 1$ for some $a \in \mathbb{R}$. The remainder when P(x) is divided by (x 1) is equal to the remainder when P(x) is divided by (x 2). Find the value of a.
- **21.** The equation $3x^3 + 2x^2 + 4x + 1 = 0$ has roots α , β and γ . Find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.
- **22.** The polynomial P(x) is given by $P(x) = x^3 + ax + b$ for some real numbers a and b. 2 is a zero of P(x). When P(x) is divided by (x + 1) the remainder is -15.
 - (a) Write down two equations in a and b.
 - (b) Hence find the values of a and b.
- **23.** The polynomial P(x) is given by

$$P(x) = x^{3} + (k-1)x^{2} + (1-k)x - 1$$

for some real number k.

- (a) Show that x = 1 is a root of the equation P(x) = 0.
- (b) Given that

$$P(x) = (x-1)(x^2 + kx + 1)$$

find the set of values of k such that P(x) = 0 has 3 real roots.

- **24.** (a) Express $x^3 3x^2 + 4$ as a product of three linear factors by first showing that (x-2) is a factor of this polynomial.
 - (b) Hence solve the inequality $x^3 3x^2 + 4 \ge 0$.
- **25.** Find the value of k if (x + 2) is a factor $P(x) = x^2 + kx + 6$.

26. If α , β and γ are the roots of $2x^3 - 5x^2 + 3x - 5 = 0$, find the value of

$$\alpha^2\beta\gamma + \alpha\beta^2\gamma + \alpha\beta\gamma^2$$

27. Find the remainder when

$$P(x) = x^3 - 3x^2 + 3x - 5$$

is divided by x - 2.

Answers

1. (a) $12 - 8x^2 + x^4$ (b) $\pm\sqrt{6}, \pm\sqrt{2}$ **2.** (a) k = -9 (b) P(x) = (x - 1)(x - 7)(x + 2) (c) x = -2, 1, 7 (d) -2 < x < 1 or x > 7**3.** $P(x) = x^3 - 3x^2 + 5x - 4$ **4.** 7 **5.** 3, -7 **6.** a = 6, b = 11, c = -18 **7.** (a) Proof (b) $\frac{1}{3}$ (c) $\frac{1}{4}, \frac{2}{5}$ **8.** Proof **9.** f(-2) = 0, f(x) = (x + 2)(x + 4)(x - 3) **10.** Proof **11.** (a) -2 (b) -3 (c) -5 (d) -5 **12.** (a) $\alpha\beta + \alpha\gamma + \beta\gamma = 4$, $\alpha\beta\gamma = 5$ (b) $\frac{4}{5}$ **13.** (a) Proof (b) P(x) = (x - 1)(3x - 1)(2x + 1) (c) $x \le -\frac{1}{2}$ or $\frac{1}{3} \le x \le 1$. **14.** (a) Proof (b) a = -2 **15.** (a) $2\alpha + \beta = 0, \alpha^2\beta = -2$ (b) m = 3 **16.** (a) $(x + 1)(3x^2 - 1)$ (b) $\theta = \frac{\pi}{6}, \frac{3\pi}{4}$ or $\frac{5\pi}{6}$ **17.** -5 **18.** (a) Proof (b) -5 **19.** (a) $P(x) = (x + 2)(x - 1)^2$ (b) $x \le -2$ or x = 1 **20.** -7 **21.** 1 **22.** (a) 8 + 2a + b = 0, -1 - a + b = -15 (b) a = 2, b = -12 **23.** (a) Proof (b) $k \le -2$ or $k \ge 2$ **24.** (a) $(x - 2)^2(x + 1)$ (b) $x \ge -1$ **25.** 5 **26.** $\frac{25}{4}$ **27.** -3

NESA Reference Sheet – calculus based courses

Trigonometric Functions

$$\sin A = \frac{\text{opp}}{\text{hyp}}, \quad \cos A = \frac{\text{adj}}{\text{hyp}}, \quad \tan A = \frac{\text{opp}}{\text{adj}}$$

$$A = \frac{1}{2}ab\sin C$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$C^{2} = a^{2} + b^{2} - 2ab\cos C$$

$$\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$

$$l = r\theta$$

$$A = \frac{1}{2}r^{2}\theta$$

$$\frac{ds}{ds} = \frac{ds}{ds}$$

adj

 $\sqrt{3}$

Trigonometric identities

$$\sec A = \frac{1}{\cos A}, \ \cos A \neq 0$$
$$\csc A = \frac{1}{\sin A}, \ \sin A \neq 0$$
$$\cot A = \frac{\cos A}{\sin A}, \ \sin A \neq 0$$
$$\cos^2 x + \sin^2 x = 1$$

Compound angles

 $\sin(A+B) = \sin A \cos B + \cos A \sin B$ $\cos(A+B) = \cos A \cos B - \sin A \sin B$ $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ If $t = \tan \frac{A}{2}$ then $\sin A = \frac{2t}{1+t^2}$ $\cos A = \frac{1-t^2}{1+t^2}$ $\tan A = \frac{2t}{1-t^2}$ $\cos A \cos B = \frac{1}{2} \left[\cos(A - B) + \cos(A + B) \right]$ $\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right]$ $\cos A \sin B = \frac{1}{2} \left[\sin(A+B) - \sin(A-B) \right]$ $\sin^2 nx = \frac{1}{2}(1 - \cos 2nx)$ $\cos^2 nx = \frac{1}{2}(1 + \cos 2nx)$

Statistical Analysis

approximately 99.7% of scores have z-scores between -3 and 3

$$E(X) = \mu$$

$$Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$$

Probability

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Continuous random variables

$$P(X \le x) = \int_{a}^{x} f(x) dx$$
$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Binomial distribution

$$P(X = r) = {}^{n}C_{r}p^{r}(1-p)^{n-r}$$

$$X \sim \operatorname{Bin}(n, p)$$

$$\Rightarrow P(X = x)$$

$$= {n \choose x}p^{x}(1-p)^{n-x}, x = 0, 1, \dots, n$$

$$E(X) = np$$

$$\operatorname{Var}(X) = np(1-p)$$

– 2 –

Differential Calculus		Integral Calculus
Function	Derivative	$\int f'(x) [f(x)]^n dx = \frac{1}{1} [f(x)]^{n+1} + c$
$y = f(x)^n$	$\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$	$\int f(x)[f(x)] dx = \frac{1}{n+1} [f(x)] + c$ where $n \neq -1$
y = uv	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	$\int f'(x)\sin f(x)dx = -\cos f(x) + c$
y = g(u) where $u = f(x)$	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	$\int f'(x)\cos f(x)dx = \sin f(x) + c$
$y = \frac{u}{v}$	$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$
$y = \sin f(x)$	$\frac{dy}{dx} = f'(x)\cos f(x)$	$\int f'(x)e^{f(x)}dx = e^{f(x)} + c$
$y = \cos f(x)$	$\frac{dy}{dx} = -f'(x)\sin f(x)$	$\int f'(x)$
$y = \tan f(x)$	$\frac{dy}{dx} = f'(x)\sec^2 f(x)$	$\int \frac{f(x)}{f(x)} dx = \ln f(x) + c$
$y = e^{f(x)}$	$\frac{dy}{dx} = f'(x)e^{f(x)}$	$\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$
$y = \ln f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$	$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$
$y = a^{f(x)}$	$\frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}$	$\int f'(x) dx = \frac{1}{\tan^{-1}} f(x) + c$
$y = \log_a f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$	$\int \frac{dx}{a^2 + [f(x)]^2} dx = \frac{1}{a} \tan \frac{1}{a} + c$
$y = \sin^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - \left[f(x)\right]^2}}$	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$
$y = \cos^{-1} f(x)$	$\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$	$\int_{a}^{b} f(x) dx$
$y = \tan^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$	$\approx \frac{b-a}{2n} \Big\{ f(a) + f(b) + 2 \Big[f(x_1) + \dots + f(x_{n-1}) \Big] \Big\}$ where $a = x_0$ and $b = x_n$
	_:	3 –

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + \binom{n}{1}x^{n-1}a + \dots + \binom{n}{r}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{split} \left| \begin{array}{c} \underline{u} \end{array} \right| &= \left| \begin{array}{c} x\underline{i} + y\underline{j} \end{array} \right| = \sqrt{x^2 + y^2} \\ \underline{u} \cdot \underline{v} &= \left| \begin{array}{c} \underline{u} \end{array} \right| \left| \begin{array}{c} \underline{v} \right| \cos \theta = x_1 x_2 + y_1 y_2 \,, \\ \text{where } \begin{array}{c} \underline{u} = x_1 \underline{i} + y_1 \underline{j} \\ \text{and } \begin{array}{c} \underline{v} = x_2 \underline{i} + y_2 \underline{j} \end{split} \end{split}$$

 $r_{\tilde{z}} = a + \lambda b_{\tilde{z}}$

Complex Numbers

 $z = a + ib = r(\cos\theta + i\sin\theta)$ $= re^{i\theta}$ $\left[r(\cos\theta + i\sin\theta)\right]^n = r^n(\cos n\theta + i\sin n\theta)$ $= r^n e^{in\theta}$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$
$$x = a\cos(nt + \alpha) + c$$
$$x = a\sin(nt + \alpha) + c$$
$$\ddot{x} = -n^2(x - c)$$

© 2018 NSW Education Standards Authority

- 4 -

References

- Brown, P. G., Evans, M., Hunt, D., McIntosh, J., Pender, W., & Ramagge, J. (2011, June). *Polynomials – A guide for teachers – Years 9 and 10, Number and Algebra Module 39.* PDF from AMSI website.
- Grove, M. (2010). *Maths in focus: mathematics extension preliminary course* (E. Bron, Ed.). McGraw-Hill Australia Pty Ltd.
- Pender, W., Sadler, D., Ward, D., Dorofaeff, B., & Shea, J. (2019). CambridgeMATHS Stage 6 Mathematics Extension 1 Year 11 (1st ed.). Cambridge Education.